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One-shot UDA

e \We have access to a labeled source domain and one unlabeled image from target
domain
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Previous works

e Previous works [1,2], rely on style transfer to adapt the source images to the target
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1: Luo, Yawei, et al. "Adversarial style mining for one-shot unsupervised domain adaptation." NeurlPS 2020
2: Wu, Xinyi, et al. "Style mixing and patchwise prototypical matching for one-shot unsupervised domain adaptive semantic segmentation." AAAI 2022



Dreambooth

e The key idea behind Dreambooth is to associate a unique identifier to the concept
we want to inject in a diffusion model

ine-Tuni Inference
ik Fine-Tuning Output
Images (~3-5) + Unique
subject’s class name identifier P_—_'
4 N ¥
"A "V -
o (V] dog :m s i
: V] the beach
= , 3 >
- "A (V] dog
walkingona P - 3
cokorful carpet” : -
Pretraind Personalized [T eS|
Text-to-Image Text-to-Image
model model

Image credits : Ruiz, Nataniel, et al. "Dreambooth: Fine tuning text-to-image diffusion models for subject-driven generation." CVPR 2023



Step 1 : Personalization

e \We finetune our diffusion model with the single target image using Dreambooth
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Image credits : Ruiz, Nataniel, et al. "Dreambooth: Fine tuning text-to-image diffusion models for subject-driven generation." CVPR 2023



Step 2 : Generation

e \We generate new images using the unique identifier associated with the target image

e \We use class-specific prompts + unique identifier to increase image diversity
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Image credits : Ruiz, Nataniel, et al. "Dreambooth: Fine tuning text-to-image diffusion models for subject-driven generation." CVPR 2023



Step 3 : Adaptation

e \We inject the generated dataset into any previous UDA framework
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Results

e DATUM is plug-and-play method making any UDA method work in a data-scarce scenario
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Domain Generalization

e in DG, we only have access to a labeled source domain during training

e Atinference, we test our model on unseen target domains
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Previous works

in DG, most methods rely on Domain Randomization or tailor-made modules to eliminate
domain specific features

e They also relied on vision-centric models pretrained on ImageNet like ResNet-50, 101

Style-Hallucinated Dual Consistency Learning for
Domain Generalized Semantic Segmentation

Texture Learning Domain Randomization for Domain Generalized Segmentation

Adversarial Style Augmentation for Domain
Generalized Urban-Scene Segmentation

RobustNet: Improving Domain Generalization in Urban-Scene Segmentation
via Instance Selective Whitening

Two at Once: Enhancing Learning and
Generalization Capacities via IBN-Net
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Usage of CLIP

e We first decided to use the feature representations of CLIP for their strong generalizability
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Usage of an LLM

We want to generate synthetic data that is as diverse as possible

We increase diversity of prompts using a Large Language Model
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crossing ...

- A photo of a lone tree on
the road ...

-A picture of a building ...
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Usage of a Diffusion Model

We generate synthetic data that is as diverse as possible

- A photo of a busy road in
daylight ...

- A snapshot of a man
crossing ...

- A photo of a lone tree on
the road ...

-A picture of a building ...
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Self-Training

e We self-train the model on the generated data using pseudo-labels (PLs)
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PL-refinement

To improve the noisy PLs, we use the Segment Anything Model (SAM) to refine them

SAM
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Training pipeline

e We incorportate our PL-refinement module during training

e \We use MobileSAM for faster inference
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CLOUDS : System of Foundation models
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Results

e CLOUDS outperforms previous traditional DGSS methods by a large margin
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Thank you !




