CLOUDS : Collaborating Foundation models for Domain Generalized Semantic Segmentation

Yasser Benigmim¹², Subhankar Roy³, Slim Essid¹, Vicky Kalogeiton², Stéphane Lathuilière¹

- ¹ LTCI, Télécom-Paris, Institut Polytechnique de Paris
- ² LIX, Ecole Polytechnique, CNRS, Institut Polytechnique de Paris
- ³ University of Aberdeen

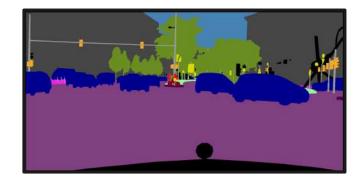
https://arxiv.org/abs/2312.09788 https://github.com/yasserben/CLOUDS

CVPR 2024

Task : Semantic Segmentation

- The objective of Semantic Segmentation is to assign a class for every pixel in the image
- A real-life HR image (2048x1024) contains ~ 2x10^e pixels

- It takes around ~90min to manually segment one image
- Training on huge amounts of **labeled real-life data** for Semantic Segmentation is very expensive

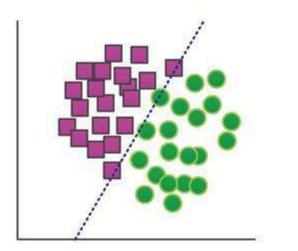


Problem setting

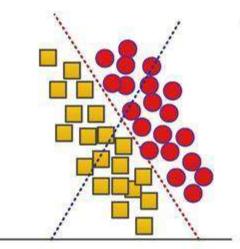
To alleviate the problem of annotations, multiple research axes have been proposed :

- Weakly-Supervised Learning, Semi-Supervised Learning ...
- Domain Adaptation :
 - Train a model in a supervised way on a **source dataset easy to collect (synthetic dataset)**
 - Use the model at inference on a target dataset (real-life dataset)

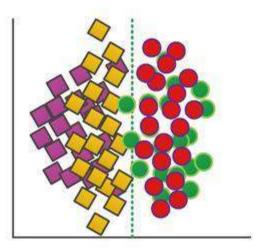
Domain Adaptation : Toy example



(a) Source Domain

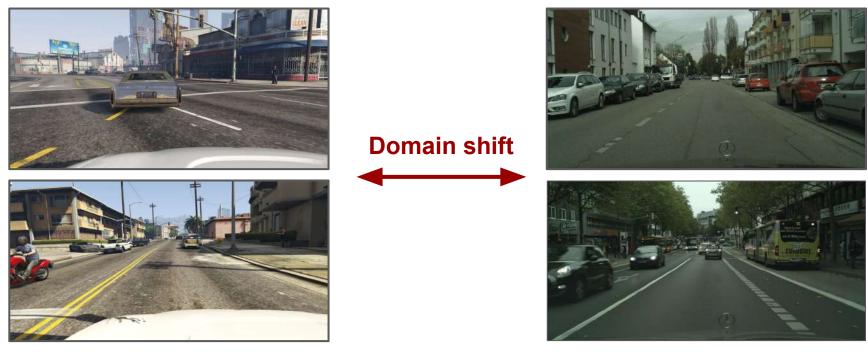


(b) Target Domain



(c) Domain Adaptation

Domain Adaptation : Semantic Segmentation



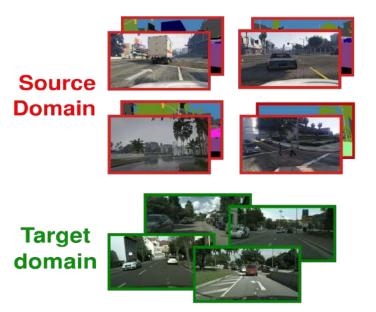
Synthetic data (GTA5)

real-life data (Cityscapes)

Image credits : S.Richter, et al. "Playing for Data: Ground Truth from Computer Games" ECCV 2016 M. Cordts, et al. "The Cityscapes Dataset for Semantic Urban Scene Understanding" CVPR 2016

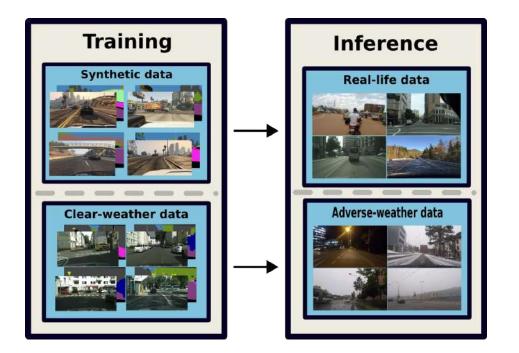
Unsupervised Domain Adaptation (UDA)

• in UDA, the model leverages **labeled source data** and **unlabeled target data** during training, then evaluates on unseen images from the **target domain**

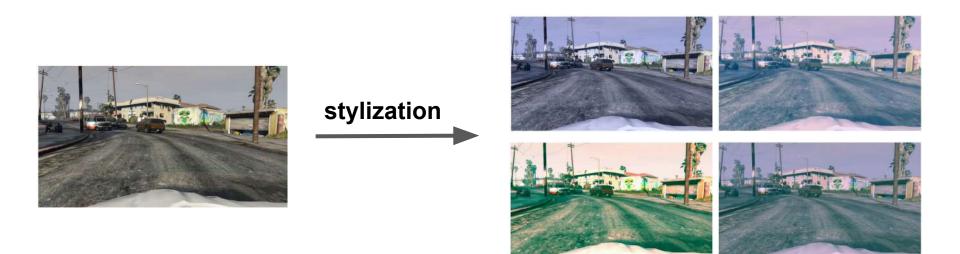


Domain Generalized Semantic Segmentation (DGSS)

• In DGSS, the model is trained on **labeled source data only** and tested on **unseen domains**



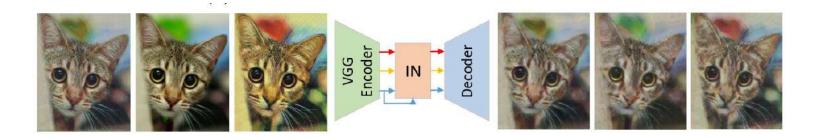
Previous works



Domain Randomization through style diversification only

1 : Z.Zhong, et al. "Adversarial Style Augmentation for Domain Generalized Urban-Scene Segmentation" NeurIPS 2022

Previous works



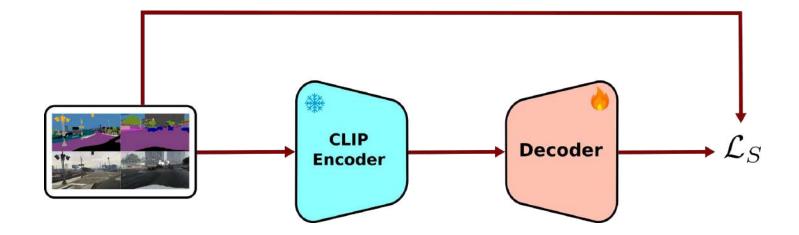
Tailor-made modules to eliminate domain specific features

Foundation models

- The rise of large-scale pretrained models, also called Foundation Models (FMs) constitute a new **paradigm shift** in the field
- We believe that bringing the power of FMs would definitely help advance the setting of DGSS :
 - Obtain robust feature representations to unseen domains (CLIP)
 - Generate diverse images with varied content and styles for self-training (T2I diffusion model + LLM)
 - Improve the pseudo labels obtained with self-training (SAM)

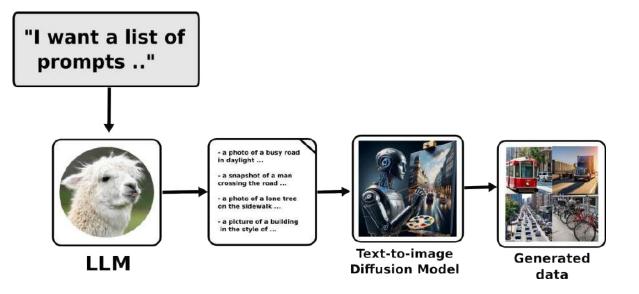
CLOUDS : Segmentation Model

- We use CLIP to extract robust feature representations
- We freeze the backbone to ensure **preserved generalizability**



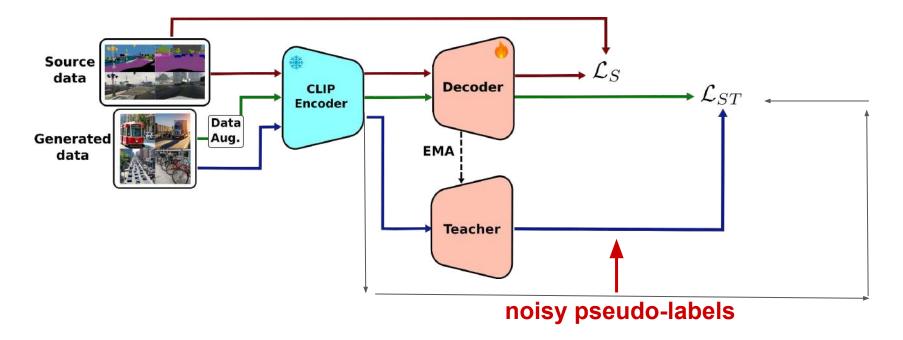
CLOUDS : Data Generation

- We generate synthetic data with a **T2I diffusion model** to simulate unseen domains for self-training
- We use an **LLM** to create descriptive text prompts that condition the T2I diffusion model for generating diverse content and styles



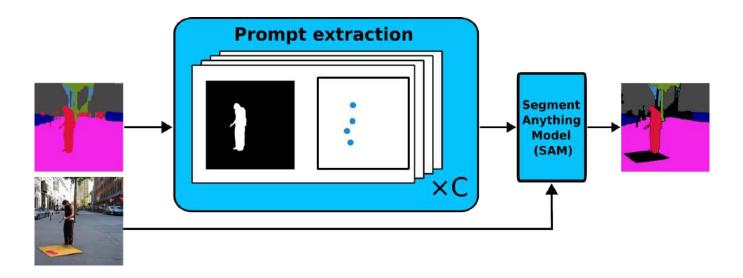
CLOUDS : Self-Training

• We self-train the model on the generated data using pseudo-labels (PLs)

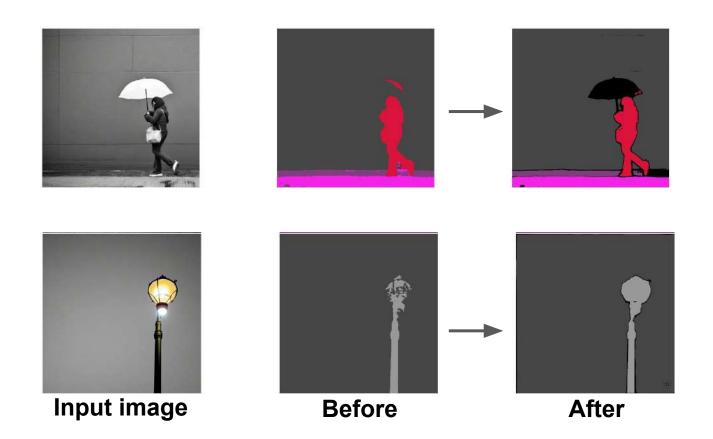


CLOUDS : Pseudo-Label Refinement

- To improve the **noisy pseudo-labels (PLs)**, we use the **Segment Anything Model (SAM)**
- We extract class-wise masks and point prompts for each noisy PL, feeding them to **SAM** to refine masks

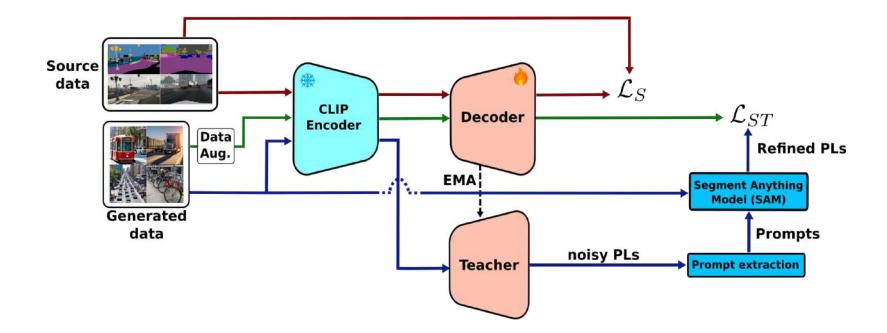


CLOUDS : Pseudo-Label Refinement



CLOUDS : Full Framework

• We incorportate our PL-refinement module during training for better self-training



Results

- CLOUDS exhibits strong performance on different backbones (ResNet-50, 101 and ConvNext-L) using CLIP pre-training.
- CLOUDS outperforms SOTA methods pre-trained on **ImageNet** (MiT-B5 backbone)

Method	Encoder	С	В	Μ	Avg
DRPC [79]		35.7	31.5	32.7	33.3
SAN-SAW [53]		38.9	35.2	34.5	36.2
MoDify [31]	ResNet-50	38.9	33.7	36.2	36.3
TLDR [33]		41.9	34.4	36.8	37.7
CLOUDS (Ours)		46.1	37.6	48.1	43.9
DRPC [79]		37.6	34.4	34.1	35.3
GTR [52]	ResNet-101	39.7	35.3	36.4	37.1
FSDR [27]		40.8	37.4	39.6	39.3
SAN-SAW [53]		40.9	36.0	37.3	38.0
TLDR [33]		42.6	35.5	37.5	38.5
HRDA * [26]		34.9	25.0	34.0	31.3
MoDify [31]		43.4	39.5	42.3	41.7
CLOUDS (Ours)		49.1	40.3	50.1	46.5
HRDA * [26]	MIT D5	39.6	32.6	40.0	37.4
CLOUDS (Ours)	MiT-B5	42.2	38.3	43.6	41.4
FC-CLIP * [78]	Convert	38.0	29.9	39.0	35.6
CLOUDS (Ours)	ConvNext-L	53.4	47.0	55.8	52.1

Table 2. Comparison with state-of-the-art methods for DGSS on Synthia \rightarrow {Cityscapes (C), BDD (B), Mapillary (M)}. * denotes experiment obtained using the official code

Ablation study

- **CLIP alone** exhibit strong performance (better than previous SOTA)
- Adding SAM helps to improve the effectiveness of self-training

Backbone	CLIP	{LLM, Diffusion}	SAM	Avg
	\checkmark			50.0
ResNet-50	\checkmark	\checkmark		50.7
	\checkmark	\checkmark	\checkmark	53.3
ResNet-101	\checkmark			51.9
	\checkmark	\checkmark		53.3
	\checkmark	\checkmark	\checkmark	54.7
ConvNext-L	\checkmark			58.5
	\checkmark	\checkmark		58.6
	\checkmark	\checkmark	\checkmark	61.5

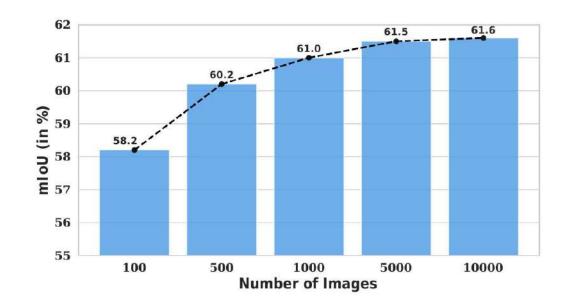
Ablation study

• Freezing the CLIP backbone helps to perform well in unseen domains

Backbone	Cityscapes	BDD100K	Mapillary	Avg.
Trainable	58.6	53.0	62.8	58.1
Frozen	60.2	57.4	67.0	61.5

Ablation study

 Increasing the size of the generated data helps to improve results until reaching a plateau



Conclusion

• Our method is one of the first to use **FMs in DGSS**, bridging a gap with the latest advancements in computer vision.

• CLOUDS integrates CLIP, a diffusion model, an LLM, and SAM to enhance feature robustness, content and style diversity, and label refinement.

Main Takeaways

- Use a Foundation Model (CLIP, DINOv2, Eva-clip, etc ...) for improved feature representations :
 - Do not touch the pre-trained weights
 - Apply PEFT if needed

- If you are in a few-shot scenario, you can use a generative model to generate more data and self-train your model on it.
 - Use generative models for data augmentation
 - Employ LLMs to increase text diversity (text-to-image diffusion model)
 - Fine-tune diffusion models for domain-specific generation

Future work

- How can we better leverage the temporal information to improve adaptation ?
- How can we better integrate **other modalities** to improve visual adaptation ?
- Is it possible to do domain "un-adaptation"?
 - Given a source and target domain closely related, how can we ensure to have a model that performs poorly on a target while keeping a good performance on the source ?